Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices

نویسندگان

  • László Erdős
  • Benjamin Schlein
چکیده

We consider N × N Hermitian random matrices with i.i.d. entries. The matrix is normalized so that the average spacing between consecutive eigenvalues is of order 1/N . We study the connection between eigenvalue statistics on microscopic energy scales η ≪ 1 and (de)localization properties of the eigenvectors. Under suitable assumptions on the distribution of the single matrix elements, we first give an upper bound on the density of states on short energy scales of order η ∼ logN/N . We then prove that the density of states concentrates around the Wigner semicircle law on energy scales η ≫ N. We show that most eigenvectors are fully delocalized in the sense that their l-norms are comparable with N 1 p − 1 2 for p ≥ 2, and we obtain the weaker bound N 2 3 `

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local semicircle law and complete delocalization for Wigner random matrices

We consider N ×N Hermitian random matrices with independent identical distributed entries. The matrix is normalized so that the average spacing between consecutive eigenvalues is of order 1/N . Under suitable assumptions on the distribution of the single matrix element, we prove that, away from the spectral edges, the density of eigenvalues concentrates around the Wigner semicircle law on energ...

متن کامل

Lectures on the local semicircle law for Wigner matrices

These notes provide an introduction to the local semicircle law from random matrix theory, as well as some of its applications. We focus on Wigner matrices, Hermitian random matrices with independent upper-triangular entries with zero expectation and constant variance. We state and prove the local semicircle law, which says that the eigenvalue distribution of a Wigner matrix is close to Wigner’...

متن کامل

Universality of Wigner Random Matrices

We consider N×N symmetric or hermitian random matrices with independent, identically distributed entries where the probability distribution for each matrix element is given by a measure ν with a subexponential decay. We prove that the local eigenvalue statistics in the bulk of the spectrum for these matrices coincide with those of the Gaussian Orthogonal Ensemble (GOE) and the Gaussian Unitary ...

متن کامل

Eigenvectors of Random Graphs : Delocalization and Nodal Domains

We study properties of the eigenvectors of adjacency matrices of G(n, p) random graphs, for p = ω(logn)/n. This connects to similar investigations for other random matrix models studied in physics and mathematics. Motivated by the recent paper of Dekel, Lee and Linial we study delocalization properties of eigenvectors and their connection to nodal domains. We show the following for an eigenvect...

متن کامل

Wegner estimate and level repulsion for Wigner random matrices

We consider N × N Hermitian random matrices with independent identically distributed entries (Wigner matrices). The matrices are normalized so that the average spacing between consecutive eigenvalues is of order 1/N . Under suitable assumptions on the distribution of the single matrix element, we first prove that, away from the spectral edges, the empirical density of eigenvalues concentrates a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008